JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 4, November 2012

SURFACES OF REVOLUTION WITH LIGHT-LIKE AXIS

DAE WON YOON* AND CHUL WOO LEE**

ABSTRACT. In this paper, we investigate the surfaces of revolution with light-like axis satisfying some equation in terms of a position vector field and the Laplacian with respect to the non-degenerate third fundamental form in Minkowski 3-space. As a result, we give some special example of the surfaces of revolution with light-like axis.

1. Introduction

Let $x : M \longrightarrow \mathbb{E}^m$ be an isometric immersion of a connected *n*dimensional manifold in Euclidean *m*-space \mathbb{E}^m . Denote by Δ the Laplacian of M with respect to the Riemannian metric on M induced from that of \mathbb{E}^m . Relative to Takahashi's theorem ([13]) for minimal submanifolds, the idea of submanifolds of finite type in Euclidean space was introduced by Chen ([4]). As a generalization of Takahashi's theorem for the case of hypersurfaces, Garay ([8]) considered the hypersurfaces in \mathbb{E}^m whose coordinate functions are eigenfunctions of the Laplacian, but not necessarily associated to the same eigenvalues, that is, he investigated the hypersurfaces satisfying the condition

(1.1)
$$\Delta x = Ax$$

where $A \in Mat(m, \mathbb{R})$ is an $m \times m$ -diagonal matrix.

On the other hand, the study of an isometric immersion satisfying (1.1) can be extended to Gauss map on a hypersurface of Euclidean space. The Gauss map is a useful tool to examine the character of the hypersurfaces in Euclidean space. In [7], Dillen, Pas and Verstraelen studied the surfaces of revolution in Euclidean 3-space \mathbb{E}^3 such that its Gauss

Received June 22, 2012; Accepted October 10, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 53A35; Secondary 53B30.

Key words and phrases: Minkowski space, surfaces of revolution, third fundamental form.

Correspondence should be addressed to Dae Won Yoon, dwyoon@gnu.ac.kr.

map G satisfies the condition

(1.2)
$$\Delta G = AG,$$

where $A \in Mat(3, \mathbb{R})$ is a 3×3 -real matrix. Baikoussis and Blair ([1]) investigated the ruled surfaces in \mathbb{E}^3 satisfying the condition (1.2). Baikoussis and Verstraelen ([2, 3]) studied the helicoidal surfaces and the spiral surfaces in \mathbb{E}^3 satisfying the condition (1.2). Also, for the Lorentz version, Choi ([5, 6]) completely classified the surfaces of revolution and the ruled surfaces with non-null(light-like) base curve satisfying the condition (1.2) in Minkowski 3-space \mathbb{E}^3_1 . On the other hand, the conditions (1.1) and (1.2) are special cases of a finite type immersion and an immersion with finite type Gauss map, respectively.

If a surface M has the non-degenerate second fundamental form II or the non-degenerate third fundamental form III, then it is regarded as a new (pseudo-)Riemannian metric on M. So, considering the conditions (1.1) and (1.2), we may have a natural question as follows: What the surfaces in \mathbb{E}^3 satisfying the conditions

(1.3)
$$\Delta^{\alpha} x = A x$$

(1.4)
$$\Delta^{\alpha}G = AG$$

where Δ^{α} is the Laplacian with respect to α of M and $\alpha = II$ or III.

For the above question, in [9] Kaimakamis and Papantoniou proved that the surfaces of revolution with space-like or time-like axis in Minkowski 3-space \mathbb{E}_1^3 satisfying $\Delta^{II}x = Ax$ are minimal or Lorentz hyperbolic cylinders or pseudospheres of real or imaginary radius. On the other hand, in [11], the authors and Kim studied the surfaces of revolution satisfying $\Delta^{II}G = AG$, proving that the only such surfaces are the catenoid or the sphere. The authors and Kim ([12]) also investigated ruled surfaces in \mathbb{E}_1^3 satisfying

(1.5)
$$\Delta^{III} x = Ax,$$

proved that such surfaces are either minimal or quadric null scroll. For the surfaces satisfying (1.5), Kaimakamis, Papantoniou and Petoumenos ([10]) proved the following theorem.

THEOREM 1.1. ([10]) Let M be a surface of revolution with space-like or time-like axis in Minkowski 3-space. Then M satisfies the condition (1.5) if and only if it is an open part of one of the pseudocatenoid, the Lorentz cylinder $S_1^1 \times R$, the pseudosphere S_1^2 or the pseudohyperbolic space H_0^2 .

The main purpose of this paper is to complete Kaimakamis, Papantoniou and Petoumenos' classification of surfaces of revolution in \mathbb{E}_1^3 by dealing with the surfaces with light-like axis.

2. Preliminaries

Let \mathbb{E}_1^3 be Minkowski 3-space with the scalar product of index 1 given by $\langle \cdot, \cdot \rangle = -dx_1^2 + dx_2^2 + dx_3^2$, where (x_1, x_2, x_3) is a standard rectangular coordinate system of \mathbb{E}_1^3 . A vector x of \mathbb{E}_1^3 is said to be space-like if $\langle x, x \rangle > 0$ or x = 0, time-like if $\langle x, x \rangle < 0$ and light-like or null if $\langle x, x \rangle = 0$ and $x \neq 0$.

We denote a surface M in \mathbb{E}_1^3 by

$$x(u,v) = (x_1(u,v), x_2(u,v), x_3(u,v)).$$

Let N be the standard unit normal vector field on M defined by $N = \frac{x_u \times x_v}{||x_u \times x_v||}$, where $x_u = \frac{\partial x(u,v)}{\partial u}$ and $x_v = \frac{\partial x(u,v)}{\partial v}$. Then the first fundamental form I of M is defined by

$$I = g_{11}du^2 + 2g_{12}dudv + g_{22}dv^2$$

where $g_{11} = \langle x_u, x_u \rangle$, $g_{12} = \langle x_u, x_v \rangle$, $g_{22} = \langle x_v, x_v \rangle$. We define the second fundamental form *II* and the third fundamental form *III* of *M* by, respectively

$$II = h_{11}du^{2} + 2h_{12}dudv + h_{22}dv^{2},$$

$$III = t_{11}du^{2} + 2t_{12}dudv + t_{22}dv^{2},$$

where

$$\begin{split} h_{11} &= \langle x_{uu}, N \rangle, \quad h_{12} &= \langle x_{uv}, N \rangle, \quad h_{22} &= \langle x_{vv}, N \rangle, \\ t_{11} &= \langle N_u, N_u \rangle, \quad t_{12} &= \langle N_u, N_v \rangle, \quad t_{22} &= \langle N_v, N_v \rangle. \end{split}$$

If the third fundamental form III is non-degenerate, then the Laplacian Δ^{III} with respect to III can be defined formally on the (pseudo-) Riemannian manifold (M, III). Using classical notation, we define the Laplacian Δ^{III} by

(2.1)
$$\Delta^{III} = -\frac{1}{\sqrt{|\mathcal{T}|}} \sum_{i,j}^{2} \frac{\partial}{\partial x^{i}} (\sqrt{|\mathcal{T}|} t^{ij} \frac{\partial}{\partial x^{j}}),$$

where $\mathcal{T} = \det(t_{ij})$ and $(t^{ij}) = (t_{ij})^{-1}$.

Now, we define a surface of revolution M in Minkowski 3-space \mathbb{E}_1^3 .

Let $\gamma : I = (a, b) \subset \mathbb{R} \to \Pi$ be a curve in a plane Π of \mathbb{E}^3_1 and l a straight line which does not intersect the curve γ . A surface of revolution

M is a non-degenerate surface revolving the curve γ around the axis l. Depending on the axis being space-like, time-like or light-like, there are three types of motions. If the axis l is space-like (resp. time-like), then l is transformed to the x_2 -axis or x_3 -axis (resp. x_1 -axis) by the Lorentz transformation. Therefore, we may consider x_3 -axis (resp. x_1 -axis) as the axis if l is space-like (resp. time-like). If the axis is light-like, we may assume that the axis is the line spanned by the vector (1, 1, 0). Thus we consider the surfaces of revolution in \mathbb{E}_1^3 with space-like, time-like or light-like axis, respectively.

Case 1. The axis l is space-like.

Suppose that the profile curve γ lies in the x_2x_3 -plane or x_1x_3 -plane. Then the curve γ can be represented by $\gamma(u) = (0, f(u), g(u))$ or $\gamma(u) = (f(u), 0, g(u))$ for some smooth functions f and g on an open interval I = (a, b). It can be seen that the rotation matrix which fixes the space-like axis $x_3 = \mathbb{R}(0, 0, 1)$ is the set of 3×3 -matrices defined by

$$\begin{pmatrix} \cosh v & \sinh v & 0\\ \sinh v & \cosh v & 0\\ 0 & 0 & 1 \end{pmatrix}$$

for any $v \in \mathbb{R}$. Hence the surface M can be parameterized by

(2.2)
$$x(u,v) = (f(u)\sinh v, f(u)\cosh v, g(u)), \quad f(u) > 0$$

(2.3)
$$x(u,v) = (f(u)\cosh v, f(u)\sinh v, g(u)), \quad f(u) > 0.$$

Case 2. The axis l is time-like.

Without loss of generality, we may assume that the profile curve γ lies in the x_1x_2 -plane. Then one of its parametrization is $\gamma(u) = (g(u), f(u), 0)$ for some positive function f = f(u) on an open interval I = (a, b). The rotation matrix which fixes the time-like axis $x_1 = \mathbb{R}(1, 0, 0)$ is the set of 3×3 -matrices given by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos v & -\sin v \\ 0 & \sin v & \cos v \end{pmatrix}$$

for any $v \in \mathbb{R}$. Hence the surface of revolution M revolving γ around the axis Ox_1 can be written as

(2.4)
$$x(u,v) = (g(u), f(u)\cos v, f(u)\sin v).$$

Case 3. The axis l is light-like.

Suppose that the axis of revolution is light-like line on x_1x_2 -plane spanned by the vector (1, 1, 0). Then the rotation matrix which the light-like axis $\mathbb{R}(1, 1, 0)$ is the set of 3×3 -matrices given by

$$\begin{pmatrix} 1 + \frac{v^2}{2} & -\frac{v^2}{2} & v \\ \frac{v^2}{2} & 1 - \frac{v^2}{2} & v \\ v & -v & 1 \end{pmatrix}$$

for any $v \in \mathbb{R}$. Thus, if the axis of revolution is the line spanned by the vector (1, 1, 0) and the curve $\gamma(u) = (f(u), g(u), 0)$ lies in the x_1x_2 -plane, the surface of revolution M can be parametrized as

(2.5)
$$x(u,v) = (f(u) + \frac{v^2}{2}p(u), g(u) + \frac{v^2}{2}p(u), p(u)v),$$

where $p(u) = f(u) - g(u) \neq 0$.

Consider $\gamma(u)$ a curve in the plane spanned by the two vectors (1, 1, 0)and (-1, 1, 0) given as a graph on the straight line spanned by the vector (-1, 1, 0), that is, $\gamma(u) = (-u+k(u), u+k(u), 0)$, where k(u) is a smooth function. Then (2.4) can be rewritten as the form:

(2.6)
$$x(u,v) = (k(u) - u - uv^2, k(u) + u - uv^2, -2uv).$$

3. Main results

In this section, we investigate the surfaces of revolution with light-like axis in \mathbb{E}^3_1 satisfying the condition (1.5).

Let M be a surface of revolution with light-like axis in \mathbb{E}_1^3 parameterized by

(3.1)
$$x(u,v) = (k(u) - u - uv^2, k(u) + u - uv^2, -2uv).$$

Then, the components of the first fundamental form of the surface are

(3.2)
$$g_{11} = 4k'(u), \quad g_{12} = 0, \quad g_{22} = 4u^2$$

From this, $k'(u) \neq 0$ and $u \neq 0$ because M is non-degenerate. On the other hand, the unit normal vector field N of M is given by

$$N = \frac{1}{2\sqrt{u^2|k'(u)|}}(uk'(u) + u + uv^2, uk'(u) - u + uv^2, 2uv).$$

Suppose that M is a space-like surface, that is, k'(u) > 0. Then, the components of the third fundamental form III are

(3.3)
$$t_{11} = \frac{k''^2}{4k'^2}, \quad t_{12} = 0, \quad t_{22} = \frac{1}{k'}.$$

Since the third fundamental form III of M is non-degenerate, $k'' \neq 0$. By (2.1), the Laplacian Δ^{III} of the third fundamental form III can be expressed as follows:

(3.4)
$$\Delta^{III} = \left(\frac{4k'^2k'''}{k''^3} - \frac{2k'}{k''}\right)\frac{\partial}{\partial u} - \frac{4k'^2}{k''^2}\frac{\partial^2}{\partial u^2} - k'\frac{\partial^2}{\partial v^2}.$$

By a straightforward computation, the Laplacain $\Delta^{III} x$ with the help of (3.1) and (3.4) turns out to be

(3.5)
$$\Delta^{III} x = (\Phi(u)(k'-1-v^2) - \Psi(u), \\ \Phi(u)(k'+1-v^2) + \Psi(u), \Phi(u)(-2v)),$$

where $\Phi(u) = \frac{4k'^2k'''}{k''^3} - \frac{2k'}{k''}$ and $\Psi(u) = -\frac{4k'^2}{k''} + 2uk'$. Suppose M satisfies the condition (1.5), that is, $\Delta^{III}x = Ax$ for some

Suppose M satisfies the condition (1.5), that is, $\Delta^{III} x = Ax$ for some matrix $A = (a_{ij})$, where i, j = 1, 2, 3. Then, from (3.1) and (3.5) we have the following equations:

(3.6)
$$\Phi(u)(k'-1-v^2) + \Psi(u) = a_{11}(k(u)-u-uv^2) + a_{12}(k(u)+u-uv^2) - 2a_{13}uv,$$

(3.7)
$$\Phi(u)(k'+1-v^2) + \Psi(u) = a_{21}(k(u)-u-uv^2) + a_{22}(k(u)+u-uv^2) - 2a_{23}uv,$$

$$(3.8) \quad -2v\Phi(u) = a_{31}(k(u) - u - uv^2) + a_{32}(k(u) + u - uv^2) - 2a_{33}uv.$$

From (3.6) and (3.7), we have

(3.9)
$$\begin{array}{c} -2\Phi(u) = (a_{11} + a_{12} - a_{21} - a_{22})k(u) - (a_{11} - a_{12} - a_{21} + a_{22})u \\ - (a_{11} + a_{12} - a_{21} - a_{22})uv^2 - 2(a_{13} - a_{23})uv. \end{array}$$

Hence we obtain

$$(3.10) a_{11} + a_{12} - a_{21} - a_{22} = 0, a_{13} - a_{23} = 0,$$

which implies that (3.9) becomes

(3.11) $2\Phi(u) = (a_{11} - a_{12} - a_{21} + a_{22})u.$

Combining (3.8) and (3.11), we have (3.12) $(-a_{11}+a_{12}+a_{21}-a_{22})uv = (a_{31}+a_{32})(k(u)-uv^2)+(-a_{31}+a_{32})u-2a_{33}uv,$ from this we get

$$(3.13) a_{31} = a_{32} = 0, a_{11} - a_{12} - a_{21} + a_{22} = 2a_{33}$$

because of $k \neq 0$. Thus, (3.11) can be reduced as

(3.14)
$$\Phi(u) = a_{33}u.$$

If we add (3.6) to (3.7), then using the above results, we find

(3.15)
$$2\Phi(u)(k'-v^2) + 2\Psi(u) = 2(a_{11}+a_{12})(k-uv^2) - (a_{11}-a_{12}+a_{21}-a_{22})u - 4a_{13}uv,$$

which implies

$$(3.16) a_{13} = 0, a_{33} = a_{11} + a_{12}.$$

By (3.10), (3.13) and (3.16), the matrix A is given by

$$\begin{pmatrix} a_{11} & a_{12} & 0\\ -a_{12} & a_{22} & 0\\ 0 & 0 & a_{33} \end{pmatrix},$$

where $a_{11} + a_{12} = -a_{12} + a_{22} = a_{33}$.

Moreover, equation (3.15) with the help of (3.14) may be rewritten as

$$(a_{33}+2)uk' - \frac{4k'^2}{k''} = a_{33}k + 2a_{12}u$$

Thus, from (3.14) and the above equation we have the system of differential equations as follows:

(3.17)
$$\begin{cases} \frac{4k'^2k'''}{k''^3} - \frac{2k'}{k''} = a_{33}u, \\ (a_{33}+2)uk' - \frac{4k'^2}{k''} = a_{33}k + 2a_{12}u. \end{cases}$$

By differentiating the second equation in (3.17) with respect to u and using the first equation in (3.17) we have the following ODE

$$(3.18) (a_{33}+1)uk''-2k'=a_{12}$$

Since equation (3.18) is a linear differential equation, we can easily find a general solution and its solution is given by

(3.19)
$$k(u) = -\frac{a_{12}}{2}u + \frac{c(a_{33}+1)}{a_{33}+3}u^{\frac{a_{33}+3}{a_{33}+1}} + d,$$

where $c \neq 0, d$ are constants of integration. Substituting (3.19) into the first equation in (3.17), we find $a_{12} = 0$, $a_{33} = -2$. Thus, equation (3.19) becomes $k(u) = -\frac{c}{u}$. Furthermore, the function k(u) is a solution of the second equation in (3.17) and the matrix A reduces A = -2I, where I is a 3×3 -identity matrix.

Consequently, the surface M is parameterized by

(3.20)
$$x(u,v) = \left(-\frac{c}{u} - u - uv^2, -\frac{c}{u} + u - uv^2, -2uv\right)$$

Dae Won Yoon and Chul Woo Lee

for some non-zero constant c (see Fig. 1).

A surface M described above is called a *surface of revolution of hyperbolic type*.

Similarly, we have the same conclusion in case of time-like surface, that is, k'(u) < 0.

Consequently, we have

THEOREM 3.1. Let M be a surface of revolution with light-like axis in Minkowski 3-space \mathbb{E}_1^3 satisfying the condition (1.5). Then M is an open part of the surface of revolution of hyperbolic type.

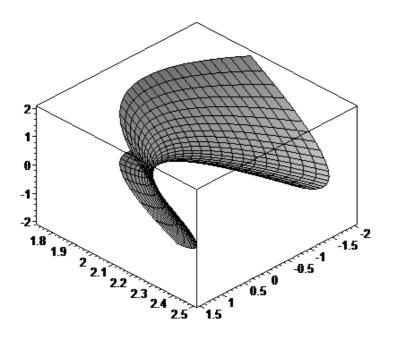


FIGURE 1

Combining Theorem 1.1 and our Theorem 3.1, we have

THEOREM 3.2. (Classification) Let M be a surface of revolution with the non-degenerate third fundamental form III in Minkowski 3-space \mathbb{E}_1^3 . Then, M satisfies the condition

$$\Delta^{III} x = Ax, \quad A \in Mat(3, \mathbb{R}),$$

if and only if it is an open part of one of the pseudocatenoid, the Lorentz cylinder $S_1^1 \times R$, the pseudosphere S_1^2 , the pseudohyperbolic space H_0^2 or the surface of revolution of hyperbolic type.

References

- C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), 355-359.
- [2] C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Math. Messina Ser. II 16 (1993), 31-42.
- [3] C. Baikoussis and L. Verstraelen, The Chen-type of the spiral surfaces, Result Math. 28 (1995), 214-223.
- [4] B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), 117-337.
- [5] S. M. Choi, On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 285-304.
- [6] S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351-367.
- [7] F. Dillen, J. Pas and L. Verstraelen, On the Gauss map of surfaces of revolution, Bull. Insto. Math. Acad. Sinica 18 (1990), 239-249.
- [8] O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), 105-112.
- [9] G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3dimensional Lorentz-Minkowski space satisfying $\Delta^{II}\vec{r} = A\vec{r}$, J. Geom. 81 (2004), 81-92.
- [10] G. Kaimakamis, B. Papantoniou and K. Petoumenos, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space \mathbb{E}_1^3 satisfying $\Delta^{III}\vec{r} = A\vec{r}$, Bull. Greek Math. Soc. **50** (2005), 75-90.
- [11] Y. H. Kim, C. W. Lee and D. W. Yoon, On the Gauss map of surfaces of revolution without parabolic points, Bull. Korean Math. Soc. 46 (2009), 1141-1149.
- [12] C. W. Lee, Y. H. Kim and D. W. Yoon, Ruled surfaces of non-degenerate third fundamental forms in Minkowski 3-spaces, Appl. Math. Computation 216 (2010), 3200-3208.
- [13] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.

Dae Won Yoon and Chul Woo Lee

686 *

> Department of Mathematics Education and RINS Gyeongsang National University Jinju 660-701, Republic of Korea *E-mail*: dwyoon@gnu.ac.kr

**

Department of Mathematics Education Gyeongsang National University Jinju 660-701, Republic of Korea *E-mail*: cwlee1094@hanmail.net